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Abstract 

Necessary ana sufficient conditions for the existence of simple graphs 

with degrees from prescribed intervals, are given. 
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Introduction 

All graphs in this paper are fiMte and have no loops and no multiple 

edges.    For undefined terms see CO- 

The degree,    d(p) = d(p,G)    of a vertex    p    in an undirected graph    G,    is 

the number of edges of    G,     incident with    p.    The outdegree    d (p,D)    (indegree 

d {p,D))    of a vortex    p    in a directed grapn    D,    is the number of edges of 

D,    having    p    ac an initial  (terminal) vertex. 

Using flows, L.   R.  Ford and D.  R.  Fulkerson [2, Theorem 11.1] give nec- 

essary and sufficient conditions under which a directed graph    D    has a subgraph 

whose outdegrees and indegrees lie  in proscribed intervals.     The aim of this 

paper is to t-tudy analogue conditions for undirected graphs. 

i 

I 

2.    Notation 

A graph is considered to be undirected unless otherwise specified. All 

graphs in this paper have the same set of vertices {p ,...,p }. A graph G 

is identified with its set of edges: for example, the complete graph on n 

vertices is K = {(p.,p.)ll < i < j < n}. 
n    i j '  —     — 

Definition:    A semi-graph    W    is a function from the edges of    K      into _    _ n 

{0,—,1}.    The degree of a vertex    p    in a semi-gra^h    \1    is    d(p>W) =    £    W(p,p.), 
2 i=l 1 

A semi-graph    W    is a semi-subgraph of a graph    G    if    (p.,p.)  iy G =* 

W(p.,p.)  =  0. 

Notation:    Throughout,    (ji    and    ^    will denote two sequences    (a  , ...,a  )    and 

(b, ,...»b  ),    respectively, of non-negative integers,  such that    a.   <_h.    for 

i  =  1,...,n. 

Definition:    A graph    H    (semi-graph    H)  is a   Q ^-realization (semi-[({i ,$]- 

realization)  if    a.   < d(p.,H)  < b.    for    i = l,...,n.    A    [> ,^]-factor 
  i -      ri        —    i   

HI . ■        
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(semi-C^^J-factor), of a given graph G, is a subgraph (semi-subgraph) of G 

which is a O,^-realization (semi-O.iJO-realization). The prefix U,^]- 

will sometimes be omitted. 

Definition: For a directed 0raph D, and a set S c {l,...,n}, 6 (p,S) is 

the number of edges of D, going from p to a vertex in S* = {p.|i e S}, 

and 6 (p,S) is the number of edges of D, going from a vertex of S* to p. 

Similarly, for a graph G,  6(p,S)  is the uutM;r of edges of G, connecting 

p to vertices in SÄ. 

3.  Weighted subgraphs 

We will need the following known theorem: 

Theorem 3.1: [2, Theorem 11.1].  Suppose D is a directed graph on n vertices 

v, ,.. . ,v , and numbers a., b., a., b. are given (i = l,...,n), such that 
In iiii 

a. < b., a! < b! for i = l,...,n. Then D has a subgraph E for whicn 
i—ii—i 

a. < d+(v.,E) < b.  (i = l,...,n) 
i —    i   - i 

(3.1) 

and 

a! <^ d"(v. ,E) ^ b!  (i = 1,. . . ,n) (3.2) 

if and only if for all    S C {!,...,n) 

n , 
7    a.   <    y    min[b.,6+(v.,S)] 

ieS    l-£i ] j 

and 

(3.3) 
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I    al <    I    Kin[b.>6'(v,,S)], 
ieS    1      i=l 3 3 

(3.4) 

:« 

Lemma 3.1: If S,T C {!,... ,n}, and 5 07=0, then for any graph G 

> I    d(p.,G)< I    d(p.,G) + s(n-l-t), 
ieS   1     ieT   1 

.. 
where s and t are the cardinalities of S and T, respectively. 

Proof:  Because G is simple. 

I    d(p.,G) - s(s-l) < Card{(p.,p.) e G|i r S, j \ S} 
rC     1 1  ] ieS 

_< I    min(s,d(p. ,G)) _< I    d(p. ,G) + sin-s-t), 
i^S        1      ieT   1 

Lemmc   3.2:     (Compare [5, Lemma ^.Ij   .     Let    W    be a semi-graph, and let    S ^ 0 

and    T    be two disjoint subsets of    II =  {l,...,n}.     Then,  if 

i  e  S,  j  c N-T   -> W(p. .p.)  =  1 (3.5) 

and 

i e  T,  j  e N-S => W(p.,p.) =  0, (3.6) 

i 

I 
I 
\ 

then 

I    d(p.,W)  =    I    d(p.,W) + s(n-l-t), 
itS        X ieT        1 

(3.7) 

m^lm^m*-—. MM 
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Proof:    By condition (3.5),      \    d(p.,W) - s(s-l)  =    \        W(p.,p.),    and by 

condition  (3.5), the last sum is equal to 

ieS 
jeN-S 

\    W(p.,p.) + s(n-s-t) 
ieS        I    * 
jeT 

ieT 
d(p.,W) + s(n-s-t), 

Definition:     Let    C =  [p.   ,...,p.   ]    be a path or a cycle  in a semi-graph    W, 
' ~ ~ 1      h     

X£ 
such that w = 3- on all its edges.  Alternating C will mean the changing of 

W on C, by alternatively adding and subtracting r along C.  In a positive 

(negative) alternation we begin at p. , (or at another specified vertex), by 

adding (subtracting) — . 

Remark:  If C is a path, then d(p. ,W) and d(p. ,U) will be changed by 

1 Xl ^ 
- , by an alternation.  If C is an odd cycle, i.e. cycle with odd number 

of edges, then d(p. ,W) will be increased, or decreased by 1, depe^ing ^n 
11 

whether the alternation is positive or negative.  In any alternation, W becomes 

integral on C, and the degrees of p. ,...,p.    do not change.  If C is 
12     1£-1 

even, i.e.  C has even number of edges, then the degree of p.   also does not 
11 

change. 

Lemma 3.3:     A graph    C    has a semi-[<> ,v]-factor    W    such that  for    i =  i,...,n 

d(p.,W)     is integer (3.8) 

If and -)nly if fo- all    S C N 

\ 

1 
\    &■  ?_    \    min(b. ,6(p. ,S)), 

ieS    *      i = l -'        :1 
(3.9) 
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I 
Proof:  Let D be the symmetric directed graph which is obtained from G by 

replacing each edge (p.,p.) by two directed edges (one from p. to p. and 

one from p. to p.). Since 6(p.,S) = 6 (p.,S) = 6'(p.,S) for i = l,...,n, 
! J 1 XXI. 

and far all    S Cll,    it follows frc:-. Theorem 3.1, that    D    has a directed 

subgraph    E    for which 

a.  < d+(p.,E),d"(p.,E) ^ b.,     (i =  1,...,ij , (3.10) 

if and only if condition (3.9) holds for    $,i|(    and    G. 

Suppose  first that    G    has a semi-[(J) ,ij;]-factor    W    which fulfills condi- 

tion  (3.8).     Let    W1 ^  {(p.,p.)|w(p.,p.)  =  1}    and    W2 =  {(pi,p.)|W(p. ,p  )  = |}. 

By condition  (3.8), each component  of    W       is Culerian.     By orienting each 

component  of    W      along an Eulerian cycle,  and by replacing each edge of    W 

by two directed edges  (one  in each direction) we obtain a directed  subgraph 

E    of    D    which fulfills condition  (3.10).     Hence condition  (3.9)  holds for 

$ ,ii    and    G. 

Suppose now that    D    has a subgraph    E,    for which condition  (3.10) holds. 

Define 

1 if    (pi,p.),(p.,Pi) e E 

W(pi,p.)=/     0 if     (p.,p.),(p..,p.) 8< E 

TT otherwise 
<.  2 

Clearly    Vv     is a semi-[({) ,i|;]-factor of    G.     let    W    =  {(p. ,p . ) |w(p. ,p ,)  = -} 

We will  show that  if condition  (3.8)  does not  hold, then  it  is possible to 

change    W,   to reduce    W  . 

mma^tmnmmmm^mmmmm   ^—     ■ 
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Notice that d(p.,W) is an integer iff d(p.,W ) is even. Thus, if for 

some  j, d(p.,W) is not integer, then there exists an index k such that 

p. and p  are in the same component of W , and d(p ,W) is not integer. 
J K z K 

Of course, a. + ^- < d(p.,W) < b. - ^ and a    + -^ <  d(p ,W) < b. - ■=■ . Hence, 

by alternating any path in W , between p.  and p . we reduce W . 

4.  The main theorems 

Theorem 4.1:  Let <> = (a.,...,a ), ty ~  (b, ,...,b ) be two sequences of non- 
 1     n        1     n 

negative integers, surh that a. < b.  for 1 = l,....n.  Then a graph G has 

a [<! ,ij;]-f actor if and only if for all S CH 

£ a. <  J" min(b.,6(p.,S)), 
, - •       ]   ] . _  i - . . 

IES     j=l 
(3.9) 

Proof:  If G has a [(!> ,i;i]-factor, then condition (3.9) holds, as we showed 

in the proof of Lemma 3.3.  To prove the other direction, suppose condition (3.9) 

holds and let VI be a semi-[4) ,i|>]-factor of G, for which condition (3.8) holds. 

Let W = {(p. ,p.)|W(p.,p.) = -}.  Each component of W  is Eulerian, and 

hence has an Eulerian cycle.  If W / 0, let C = [p. ,...,p. ]  be such 

a cycle.  If C is even we may reduce W  by alternating C, either posi- 

tively or negatively.  If C = [p. ,...,p. ]  is odd, then since a.  < b. , 
11     Xl 11   11 

either  J(p. ,W) > T.  or d(p. ,W) < b.  (or both).  In the first case a 

negative alternation of C will reduce W  and in the second case, a positive 

alternation will reduce W . 

Notice that the ^tron^ inequalities a. < b. are nee^d for the reduction 

only for the alternation of odd cycles.  Since the smallest odd cycle is a 

1 
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triangle we may allow an equality a. = b. in one or two indices i, in the 

conditions of Theorem 4.1. 

Theorem 4.2: Suppose $ t ty    and $     is arranged in a non-increased order. Then, 

a [(KliO-realization exists if and only if 

a) for j = 1,. .. ,n 

"i      1 n 

][ a. ^ [ min(b.,j-l) +  I      min(b.,i) 
i=l     i=l i=j+l 

(4.1) 

and 

b)    there are no two disjoint sets    S,T c N,    S ^ 0,    for which 

£    a.  +     £    b.     is odd 
i^T    1      ieT    1 

(4.2) 

I    a.   =    I    h.  + s(n-l-t), 
icS irT 

(4.3) 

I    " 

and 

a.  = b.    for    i E 1J-S-T. (4.4) 

(      - 
I 
K 

1 

I 
I 

Proof:     Condition  ('♦.I)  is a particular case of conuition  (3.9),  where the 

given graph is    K  . n 

Suppose a    [$ ^J-reaxi^* i.on exists and  for    S   ,T    C :i    such that    S    f  t 
0'   0 

and    S     PIT    =  /,    conditions  (4.2)-(4.4:  hold.    Then 

(n-l-t0)  --    I      a.   -   J      b.   <   J      J(pi,H)  -    I      d(Pi,H)  <  s0(n-l-t0) 
ieSo   *     iETo icSo 

icT, 

(The last inequality follows from Lemma 3.1.) Thus, 
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and 

d(p.,H) = a.     for    it N-T 

d(p.,H) = b.     for    i e T. ri i 

Hence, by  condition  (4.2),      £    d(p.,H)     is odd,  a contradiction. 
i=l        1 

Suppose now that condition (4.1) holds for    $    and    ^,    out no     [«l»,^]- 

realization exists.    We will construct a pair of disjoint sots    S,T CN,    S ^ 0, 

for which conditions (14.2)-(4.4) hold. 

By Lemma 3.3 and the proof of Theorem 4.1,  there exists a semi-E«!'»li*]- 

realization    W    such that    d(p.,VO    is  an  integer  for    i  =  l,...,n,     and such 

that    W    =   {(p. ,p.)|w(p.,p.)  = -}    has no even cycles.     Suppose 

C,   = Cp.   ,...,p.   3    and    C    =  [p.   ,...,p.   ]    are two odd Euleria. cycles  in 
1. Xl ^1 :k 

W_.     If    W(p.   ,p.   )  =  1    we may reduce    V.'^    by defining    I7(p.   ,p.   )   =   0    and 
2 ^     ^ . i,     ^ 

making a positive alternation of both    C      and    C       (See  Figure 1).     A similar 

 W  =  1  (Before changing) 0/ 
s 

_   _  _ W = — (Before changing) ' C 

^N1 

s 
1 / s 

\ 0 

\ 

/Pil   pl^ 

\ 
""        0 

} /I 
\ / 
\_ / 

0 

Figure 1 

The numbers show the new values of W. 

I 
I 

reduction  is obtained  if    W(p.   ,p.   )  =  0    by  setting    W(p.   ,p.   )  =  1     and 
l     Jl 1i     1■ 1 

mo aking a negative alternation of tne cycles.     Thus there exists a  semi-[<Ji ,ii/]- 

realization    W,     in which    W    = [p.   ,. . . ,p.   ]  = C    is an odd cycle.     Fix    W 
11 14 

for which    W      is maximal  • ^nd fix    C). 

tM^MMH m—m 
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Let 

s = u|p. \y2, w(pi,pi  ) W(p ,p  ) = 1), 

T = {i|p \W  W(p p  ) = ...= W(p p  ) = 0}, 
1  ^-l ^^  «, 

I 

We have to show that if no [(J),^-realization exists, then conditions ('+.2)-(U.i+) 

hold for S and T. We will show it, in a chain of 5 claims, the proofs of 

which will be given at the end of the proof of the theorem. 

Claim 1.  If i e S and j c N-T,  then W(p.,p.) = 1. 
  i j 

Claim 2.  If iti    ?-.■'  je N-S,  then W(p.,p.) = 0. 

riaim 3.  If i k S, then d(p.,W) = b.. 

Claim <+.     If    i iv T,    then    d(p. ,W)  = a. , 

Claim  5.     The  cet    S    is not empty. 

Using Lemma  3.2,  claims 1,  2  and 5  imply the  equ^lLy      ][    dCp.,!-.')  =     £    d(p.,V) 
leb ieT 

+ s(n-l-t).  Claims 3 and H imply that  1    a-   =    1    d(p.,v;) 
ieS ieS 

Jl    a.   =    [    d(p.,W),      I    h.   -    I    d(p.,W),     and for    i^SUT, 
i^T    1      i\T        1 ieT    :L      ieT        1 

a.   = d(p.,W)   =  b..     Therefore  conditions  C+.S)  and  (U.U) hold for    S     and    T 
ill 

1 
and since    W    has exactly one odd cycle  on which    W =  ,r  ,     the sum      £    d(p.,W) 

i=l 
is odd, and hence condition (U.2) also holds.     Thus we have  shown that   if 

no    [({>,^-realization exists we c-<n  find a pair    S,T CH    for which conditions 

(4.2)-(14.U)  hold. 

To  finish the proof we have only to prove the 5 claims: 

iii   HI   ii^ 
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10 

Then Proof of claim 1:     Since    i e S,    (p  ,p.) ^W   ,     Suppose    W(p.,p.) = 0. 

by the construction of    S,    p. ^ W  .    As    j  ^ T    there exists a vertex    pk 

on    W-    such that    W(p.,p, ) = 1.    Let    p      be th^ consecutive vertex of    p, , 
2 j  rk r K 

along    C.     (See  Figure  2).     By redefining    W(p   ,p  )  = 1, Wtp^p.)  = W(p. ,pk) 

W(p.,p  ) = -   we enlarge    W,,    a contradiction to its maximality. 

W =   1  (Before changing) 

—  —   —   —W = — (Before changing) 

W  =  0  (Before changing) 

Figure  2 

The numbers show the new values of W. 

Proof of claim 2:     Similarly to the case of claim 1,   if    W(p.,p.)  ^ 0    for 

i e T,    je N-S,    then    W(p.,p.) = 1,    p.  ^ C,    there exists    k    such that 

W(p.>P.)  =  0    and  if    p      is the consecui"ive  vertex of    p, ,    on    C,    then 
j     K r * 

redefining    W(p   ,p   )   =  C    and    W(p.,p.)  = W(p.,p   )  = W(p   ,p  )  = y    enlarges 

W  .     (See Figure  3). 

W = 1 (Before changing) 

 — — W = — (Before changing) 

W = 0 (Before changing) 

X \ 
\ 
\ 

\ 

/ 

\ ' 

I 

Figure  3 

The numbers show the new values of W. 

M^M-i—-. — I  
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Proof of claim 3:     Suppose    i ^ f,    and    d(p.,W)  < L..     If    p.  e C    we may reduce 

W     i," a positive alternation o      C,    beginning at    p..    (Comoare to the proof 

of Theorem U.l).     If    p    ^ C    then    W(p.,p  ) =  0    for some    p.   e C    and ve may 

once more reduce    W-,    by =» negative alternation of    C,    beginning at    p      and 

by set    W(p.,p  ) =  1.     (See Figure 4).     In each case we obtain a semi-graph 

W'    which never gets the value    — ,    i.e.   a    [Q,'pi-factor, a contradiction. 
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Figure 1 

The numbers show the new values of W. 

Proof of claim U: As in the case of claim 3, if d(p.,W) > a., p. ^ C but 

there exists an index k such that p c C and W(p.,p ) = 1. Thus we may 

reduce W  by letting W(p.,p ) = 0 and by making a negative alternation 

of C, beginning at p. 

Proof of claim 5:  We assumed <t> ^ ^  Let a. ^ b. . Claims 3 and 4 imply that 

keSUT.  If keS, then there is nothing to prove. Suppose k e T. Then 

i 
d(p. ,W) = b > a > 0, and since W(p ,p.) = 0 for all j e N-S, there 

k      k   K ~— ^ D 

exists r e S such that W(p. ,p ) = 1. In particular S is not empty. 
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